Geodesically Reversible Finsler 2-spheres of Constant Curvature

نویسندگان

  • ROBERT L. BRYANT
  • R. BRYANT
چکیده

A Finsler space (M,Σ) is said to be geodesically reversible if each oriented geodesic can be reparametrized as a geodesic with the reverse orientation. A reversible Finsler space is geodesically reversible, but the converse need not be true. In this note, building on recent work of LeBrun and Mason [13], it is shown that a geodesically reversible Finsler metric of constant flag curvature on the 2-sphere is necessarily projectively flat. As a corollary, using a previous result of the author [4], it is shown that a reversible Finsler metric of constant flag curvature on the 2-sphere is necessarily a Riemannian metric of constant Gauss curvature, thus settling a long-standing problem in Finsler geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Geodesic behavior for Finsler metrics of constant positive flag curvature on S

We study non-reversible Finsler metrics with constant flag curvature 1 on S and show that the geodesic flow of every such metric is conjugate to that of one of Katok’s examples, which form a 1-parameter family. In particular, the length of the shortest closed geodesic is a complete invariant of the geodesic flow. We also show, in any dimension, that the geodesic flow of a Finsler metrics with c...

متن کامل

Existence of closed geodesics on positively curved Finsler manifolds Hans - Bert Rademacher

For non-reversible Finsler metrics of positive flag curvature on spheres and projective spaces we present results about the number and the length of closed geodesics and about their stability properties.

متن کامل

Existence of closed geodesics on positively curved Finsler manifolds

For non-reversible Finsler metrics of positive flag curvature on spheres and projective spaces we present results about the number and the length of closed geodesics and about their stability properties. 2000 MSC classification: 53C22; 53C60; 58E10

متن کامل

Existence of closed geodesics on Finsler n-spheres

In this paper, we prove that on every Finsler n-sphere (S, F ) with reversibility λ satisfying F 2 < ( λ )g0 and l(S , F ) ≥ π(1 + 1 λ ), there always exist at least n prime closed geodesics without self-intersections, where g0 is the standard Riemannian metric on S n with constant curvature 1 and l(S, F ) is the length of a shortest geodesic loop on (S, F ). We also study the stability of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004